V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
fendouai_com
V2EX  ›  Python

PyTorch 高级实战教程:基于 Bi-LSTM CRF 实现命名实体识别和中文分词

  •  1
     
  •   fendouai_com · 2019-04-12 20:05:05 +08:00 · 5013 次点击
    这是一个创建于 2056 天前的主题,其中的信息可能已经有所发展或是发生改变。

    前言:实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享。

    具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 “ BEMS ” 就可以跑起来了。

    # Make up some training data
    training_data = [(
        "the wall street journal reported today that apple corporation made money".split(),
        "B I I I O O O B I O O".split()
    ), (
        "georgia tech is a university in georgia".split(),
        "B I O O O O B".split()
    )]
    

    Pytorch 是一个动态神经网络工具包。 动态工具包的另一个例子是 Dynet (我之所以提到这一点,因为与 Pytorch 和 Dynet 的工作方式类似。如果你在 Dynet 中看到一个例子,它可能会帮助你在 Pytorch 中实现它)。 相反的是静态工具包,包括 Theano,Keras,TensorFlow 等。核心区别如下:

    在静态工具箱中,您可以定义一次计算图,对其进行编译,然后将实例流式传输给它。 在动态工具包中,您可以为每个实例定义计算图。 它永远不会被编译并且是即时执行的。 动态工具包还有一个优点,那就是更容易调试,代码更像主机语言(我的意思是 pytorch 和 dynet 看起来更像实际的 python 代码,而不是 keras 或 theano )。

    Bi-LSTM Conditional Random Field ( Bi-LSTM CRF ) 对于本节,我们将看到用于命名实体识别的 Bi-LSTM 条件随机场的完整复杂示例。 上面的 LSTM 标记符通常足以用于词性标注,但是像 CRF 这样的序列模型对于 NER 上的强大性能非常重要。 假设熟悉 CRF。 虽然这个名字听起来很可怕,但所有模型都是 CRF,但是 LSTM 提供了特征。 这是一个高级模型,比本教程中的任何早期模型复杂得多。

    实现细节: 下面的例子在 log 空间中实现了计算微分函数的正向算法,以及要解码的维特比算法。反向传播将自动为我们计算梯度。我们不必用手做任何事。

    这个算法用来演示,没有优化。如果您了解正在发生的事情,您可能会很快看到,在转发算法中迭代下一个标记可能是在一个大型操作中完成的。我想用代码来提高可读性。如果你想做相关的改变,你可以用这个标记器来完成真正的任务。

    # Author: Robert Guthrie
    
    import torch
    import torch.autograd as autograd
    import torch.nn as nn
    import torch.optim as optim
    
    torch.manual_seed(1)
    

    帮助程序函数,使代码更具可读性。

    def argmax(vec):
        # return the argmax as a python int
        _, idx = torch.max(vec, 1)
        return idx.item()
    
    
    def prepare_sequence(seq, to_ix):
        idxs = [to_ix[w] for w in seq]
        return torch.tensor(idxs, dtype=torch.long)
    
    
    # Compute log sum exp in a numerically stable way for the forward algorithm
    def log_sum_exp(vec):
        max_score = vec[0, argmax(vec)]
        max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
        return max_score + \
            torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
    

    创建模型

    class BiLSTM_CRF(nn.Module):
    
        def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
            super(BiLSTM_CRF, self).__init__()
            self.embedding_dim = embedding_dim
            self.hidden_dim = hidden_dim
            self.vocab_size = vocab_size
            self.tag_to_ix = tag_to_ix
            self.tagset_size = len(tag_to_ix)
    
            self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
            self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
                                num_layers=1, bidirectional=True)
    
            # Maps the output of the LSTM into tag space.
            self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
    
            # Matrix of transition parameters.  Entry i,j is the score of
            # transitioning *to* i *from* j.
            self.transitions = nn.Parameter(
                torch.randn(self.tagset_size, self.tagset_size))
    
            # These two statements enforce the constraint that we never transfer
            # to the start tag and we never transfer from the stop tag
            self.transitions.data[tag_to_ix[START_TAG], :] = -10000
            self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
    
            self.hidden = self.init_hidden()
    
        def init_hidden(self):
            return (torch.randn(2, 1, self.hidden_dim // 2),
                    torch.randn(2, 1, self.hidden_dim // 2))
    
        def _forward_alg(self, feats):
            # Do the forward algorithm to compute the partition function
            init_alphas = torch.full((1, self.tagset_size), -10000.)
            # START_TAG has all of the score.
            init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
    
            # Wrap in a variable so that we will get automatic backprop
            forward_var = init_alphas
    
            # Iterate through the sentence
            for feat in feats:
                alphas_t = []  # The forward tensors at this timestep
                for next_tag in range(self.tagset_size):
                    # broadcast the emission score: it is the same regardless of
                    # the previous tag
                    emit_score = feat[next_tag].view(
                        1, -1).expand(1, self.tagset_size)
                    # the ith entry of trans_score is the score of transitioning to
                    # next_tag from i
                    trans_score = self.transitions[next_tag].view(1, -1)
                    # The ith entry of next_tag_var is the value for the
                    # edge (i -> next_tag) before we do log-sum-exp
                    next_tag_var = forward_var + trans_score + emit_score
                    # The forward variable for this tag is log-sum-exp of all the
                    # scores.
                    alphas_t.append(log_sum_exp(next_tag_var).view(1))
                forward_var = torch.cat(alphas_t).view(1, -1)
            terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
            alpha = log_sum_exp(terminal_var)
            return alpha
    
        def _get_lstm_features(self, sentence):
            self.hidden = self.init_hidden()
            embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
            lstm_out, self.hidden = self.lstm(embeds, self.hidden)
            lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
            lstm_feats = self.hidden2tag(lstm_out)
            return lstm_feats
    
        def _score_sentence(self, feats, tags):
            # Gives the score of a provided tag sequence
            score = torch.zeros(1)
            tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
            for i, feat in enumerate(feats):
                score = score + \
                    self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
            score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
            return score
    
        def _viterbi_decode(self, feats):
            backpointers = []
    
            # Initialize the viterbi variables in log space
            init_vvars = torch.full((1, self.tagset_size), -10000.)
            init_vvars[0][self.tag_to_ix[START_TAG]] = 0
    
            # forward_var at step i holds the viterbi variables for step i-1
            forward_var = init_vvars
            for feat in feats:
                bptrs_t = []  # holds the backpointers for this step
                viterbivars_t = []  # holds the viterbi variables for this step
    
                for next_tag in range(self.tagset_size):
                    # next_tag_var[i] holds the viterbi variable for tag i at the
                    # previous step, plus the score of transitioning
                    # from tag i to next_tag.
                    # We don't include the emission scores here because the max
                    # does not depend on them (we add them in below)
                    next_tag_var = forward_var + self.transitions[next_tag]
                    best_tag_id = argmax(next_tag_var)
                    bptrs_t.append(best_tag_id)
                    viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
                # Now add in the emission scores, and assign forward_var to the set
                # of viterbi variables we just computed
                forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
                backpointers.append(bptrs_t)
    
            # Transition to STOP_TAG
            terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
            best_tag_id = argmax(terminal_var)
            path_score = terminal_var[0][best_tag_id]
    
            # Follow the back pointers to decode the best path.
            best_path = [best_tag_id]
            for bptrs_t in reversed(backpointers):
                best_tag_id = bptrs_t[best_tag_id]
                best_path.append(best_tag_id)
            # Pop off the start tag (we dont want to return that to the caller)
            start = best_path.pop()
            assert start == self.tag_to_ix[START_TAG]  # Sanity check
            best_path.reverse()
            return path_score, best_path
    
        def neg_log_likelihood(self, sentence, tags):
            feats = self._get_lstm_features(sentence)
            forward_score = self._forward_alg(feats)
            gold_score = self._score_sentence(feats, tags)
            return forward_score - gold_score
    
        def forward(self, sentence):  # dont confuse this with _forward_alg above.
            # Get the emission scores from the BiLSTM
            lstm_feats = self._get_lstm_features(sentence)
    
            # Find the best path, given the features.
            score, tag_seq = self._viterbi_decode(lstm_feats)
            return score, tag_seq
    
    

    开始训练

    START_TAG = "<START>"
    STOP_TAG = "<STOP>"
    EMBEDDING_DIM = 5
    HIDDEN_DIM = 4
    
    # Make up some training data
    training_data = [(
        "the wall street journal reported today that apple corporation made money".split(),
        "B I I I O O O B I O O".split()
    ), (
        "georgia tech is a university in georgia".split(),
        "B I O O O O B".split()
    )]
    
    word_to_ix = {}
    for sentence, tags in training_data:
        for word in sentence:
            if word not in word_to_ix:
                word_to_ix[word] = len(word_to_ix)
    
    tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
    
    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
    optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
    
    # Check predictions before training
    with torch.no_grad():
        precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
        precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
        print(model(precheck_sent))
    
    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(
            300):  # again, normally you would NOT do 300 epochs, it is toy data
        for sentence, tags in training_data:
            # Step 1. Remember that Pytorch accumulates gradients.
            # We need to clear them out before each instance
            model.zero_grad()
    
            # Step 2. Get our inputs ready for the network, that is,
            # turn them into Tensors of word indices.
            sentence_in = prepare_sequence(sentence, word_to_ix)
            targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
    
            # Step 3. Run our forward pass.
            loss = model.neg_log_likelihood(sentence_in, targets)
    
            # Step 4. Compute the loss, gradients, and update the parameters by
            # calling optimizer.step()
            loss.backward()
            optimizer.step()
    
    # Check predictions after training
    with torch.no_grad():
        precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
        print(model(precheck_sent))
    # We got it!
    

    输出

    (tensor(2.6907), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1])
    (tensor(20.4906), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])
    

    我们没有必要在进行解码时创建计算图,因为我们不会从维特比路径得分反向传播。 因为无论如何我们都有它,尝试训练标记器,其中损失函数是维特比路径得分和测试标准路径得分之间的差异。 应该清楚的是,当预测的标签序列是正确的标签序列时,该功能是非负的和 0。 这基本上是结构感知器。

    由于已经实现了 Viterbi 和 score_sentence,因此这种修改应该很短。 这是取决于训练实例的计算图形的示例。 虽然我没有尝试在静态工具包中实现它,但我想它可能但不那么直截了当。

    拿起一些真实数据并进行比较!

    原文链接: https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html#advanced-making-dynamic-decisions-and-the-bi-lstm-crf

    更多 PyTorch 实战教程: http://pytorchchina.com/

    3 条回复    2019-04-16 09:57:01 +08:00
    diggerdu
        1
    diggerdu  
       2019-04-12 23:12:40 +08:00 via iPhone
    写的不错
    oblivious
        2
    oblivious  
       2019-04-12 23:34:40 +08:00
    NICE WORK!

    但是有一个小问题:这好像不是中文分词,是我理解错了吗 > <
    fendouai_com
        3
    fendouai_com  
    OP
       2019-04-16 09:57:01 +08:00
    @oblivious 这个是 NER,可以迁移到中文分词,文章开头有提到迁移的思路。
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1175 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 24ms · UTC 18:30 · PVG 02:30 · LAX 10:30 · JFK 13:30
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.