V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX 提问指南
pagict
V2EX  ›  问与答

我也遇到一个面试题 冥思苦想不出 夜不能寐 求解

  •  
  •   pagict · 2013-12-27 11:32:35 +08:00 · 4777 次点击
    这是一个创建于 3975 天前的主题,其中的信息可能已经有所发展或是发生改变。
    说在一个整型数组里,所有的数都重复了两次,仅有两个数是不重复的,如何在时间 O(n) 和空间 O(1) 内找出这两个数?

    想了好久,关键是空间复杂度不符合。有种被虐的痛苦
    37 条回复    1970-01-01 08:00:00 +08:00
    cxe2v
        1
    cxe2v  
       2013-12-27 11:39:07 +08:00
    数组是有序还是无序的?
    34D
        2
    34D  
       2013-12-27 11:40:15 +08:00   ❤️ 2
    异或。
    pagict
        3
    pagict  
    OP
       2013-12-27 11:52:51 +08:00
    @cxe2v 没提,想来是无序的。要是有序那就好做了

    @34D 分别跟谁异或啊
    dingyaguang117
        4
    dingyaguang117  
       2013-12-27 12:04:59 +08:00
    2个数不重复啊。。
    vainly
        5
    vainly  
       2013-12-27 12:41:10 +08:00
    //用来存放找出来的数据
    Map<Integer,Integer> map = new HashMap<Integer,Integer>();
    //整数数组
    Integer[] array = {1,1,2,2,3,3,4,5,5,6,6,7};
    for(int i=0;i<array.length;i++){
    Integer key = array[i];
    if(map.get(key)==null){
    map.put(key, 1);
    }else{
    map.remove(key);
    }
    }
    //输出结果
    System.out.println(map.toString());
    327beckham
        6
    327beckham  
       2013-12-27 12:46:24 +08:00   ❤️ 1
    如果不是编程之美上有这个题目,就是剑指offer上有这个题目。
    先从只有一个数不重复的题目扩展开来即可。
    327beckham
        7
    327beckham  
       2013-12-27 12:52:18 +08:00   ❤️ 2
    还是直接说答案吧,如果是只有一个数不重复的话,所有数字抑或,即可找到那个数。
    现在扩展成两个数了,那么第一步还是全部异或,最后剩下的那个数A,就是两个单独数字的异或了。这个时候,在A中随便找一个某个bit为1的位置。按照这个bit是否为1,可以将题目中的原有的数组分成两个数组了,而且这两个数组中分别有一个只出现一次的数。
    pagict
        8
    pagict  
    OP
       2013-12-27 12:53:54 +08:00 via iPhone
    @dingyaguang117 形如 [1,2,3,4,5,4,7,1,2,3]

    @vainly 空间复杂度不对啊

    @327beckham 是有两个数不重复
    327beckham
        9
    327beckham  
       2013-12-27 12:54:46 +08:00
    时间复杂度:整个数组扫描两遍,空间复杂度:记录几个变量即可。
    327beckham
        10
    327beckham  
       2013-12-27 12:59:22 +08:00   ❤️ 1
    @pagict 跟你说个最最简单的例子吧:1 64 3 3 4 4 5 5 6 6 7 7这个数组全部异或之后,肯定得到的是1和64的异或的结果,得到的数字是3.二进制也就是0100 0001. 从右往左数的第1个bit是个1吧。那就按照第一个bit是否为1,可以将原有数组的所有数字分成两组了。
    327beckham
        11
    327beckham  
       2013-12-27 13:00:06 +08:00
    @pagict 上面一句写错了,1异或64是65.。。我写成3了
    pagict
        12
    pagict  
    OP
       2013-12-27 13:03:31 +08:00 via iPhone
    @327beckham 异或是每个数组元素和谁异或
    anewg
        13
    anewg  
       2013-12-27 13:07:20 +08:00
    @327beckham 没看懂你的解法,楼主的题目是要时间 O(n) 和空间 O(1),你这个再分数组不就超过了吗?而且分成两组然后呢?
    anewg
        14
    anewg  
       2013-12-27 13:08:35 +08:00
    @pagict 两两异或过去,相同的元素异或都会为0,最后0跟那个没重复的单个元素异或得那元素本身
    pagict
        15
    pagict  
    OP
       2013-12-27 13:11:35 +08:00 via iPhone
    @anewg 题目没说已经归类好了啊 若是形如 [1,2,3,4,5,4,7,1,2,3] 呢
    anewg
        16
    anewg  
       2013-12-27 13:18:15 +08:00
    @pagict 那个异或的只针对1个不重复
    327beckham
        17
    327beckham  
       2013-12-27 13:39:32 +08:00   ❤️ 1
    @anewg 我说的分组也就是 逻辑理解上分组而已嘛,并没有说另外开个空间存这两个数组啊。第二次扫描原有数组的时候,某一类异或结果存到X,另外一类异或存到Y。最后答案就是X和Y这两个数了嘛。
    327beckham
        18
    327beckham  
       2013-12-27 13:41:36 +08:00
    @pagict 1异或2异或3和 2异或3异或1,结果一样,交换律。不在乎原有顺序
    biaobiaoqi
        19
    biaobiaoqi  
       2013-12-27 14:45:12 +08:00
    @327beckham 很赞的思路!
    Sdhjt
        20
    Sdhjt  
       2013-12-27 14:50:33 +08:00
    @327beckham 思路很赞,只需要扫描两遍数组就可以。下面用Go实现了一个例子:

    package main

    import (
    "fmt"
    )

    func main() {
    nums := []int{23, 23, 19, 19, 1, 88, 88, 3, 3, 2, 56, 56}

    //设两个不重复的数为a1和a2,x = a1 ^ a2,bits为a1和a2某个不一致的位
    var a1, a2, x, bits int

    //将所有的数字异或,得到的结果就为x,因为重复的数经过异或后都为0
    for _, v := range nums {
    x = x ^ v
    }

    //找出a1和a2某个不一致的位,换句话说,就是找出x为1的位(当然,x为1的位有很多,我们这找的是x从右往左第一个为1的位)
    bits = 1
    for i := 31; i >= 0; i++ {
    if x&bits != 0 {
    break
    }
    bits = bits << 1
    }

    //舍去所有bits位为0的位,将剩下的数字全部异或,这样就能得出两个不重复的数字其中的一个
    for _, v := range nums {
    if v&bits != 0 {
    a1 = a1 ^ v
    }
    }

    //根据x和a1可以很容易求出a2
    a2 = x ^ a1

    fmt.Println("Result : ", a1, a2)
    }
    duzhe0
        21
    duzhe0  
       2013-12-27 15:41:01 +08:00
    我估计是题目错了, 有两个数不重复在O(n)时间和O(1)空间应该是不可能找出来的。或者说, 我们没有办法在O(n)的时间里利用O(1)的空间提取出这么大的信息量。
    duzhe0
        22
    duzhe0  
       2013-12-27 15:48:32 +08:00
    @Sdhjt
    这个肯定不行的, 你自己随便构造一个例子试试。
    duzhe0
        23
    duzhe0  
       2013-12-27 16:00:17 +08:00
    @vainly 你这个至少是O(n)的空间复杂度。
    Sdhjt
        24
    Sdhjt  
       2013-12-27 16:05:07 +08:00
    @duzhe0 例子是刚写的,已经经过我测试了,或者你可以举个例子,我放程序里测一下。
    duzhe0
        25
    duzhe0  
       2013-12-27 16:07:09 +08:00
    @Sdhjt 1, 1, 3, 5
    duzhe0
        26
    duzhe0  
       2013-12-27 16:08:06 +08:00
    @Sdhjt
    或者2,2,3,5
    Sdhjt
        27
    Sdhjt  
       2013-12-27 16:08:32 +08:00
    @duzhe0
    Result : 3 5
    duzhe0
        28
    duzhe0  
       2013-12-27 16:12:42 +08:00
    @Sdhjt
    ?
    难道我错了?
    你试试
    1, 1, 2, 2, 4, 4, 3, 5
    Sdhjt
        29
    Sdhjt  
       2013-12-27 16:15:39 +08:00   ❤️ 1
    @duzhe0
    Result : 3 5
    @327beckham 的思路是对的。
    stackpop
        30
    stackpop  
       2013-12-27 16:17:22 +08:00   ❤️ 1
    @duzhe0 显然可以
    1^1^3^5 = 3^5 = 6 = (0110)二进制

    按倒数第二位为1来分组,可以分成
    第一组 1 1 5 ,1^1^5 = 5
    第二组 3
    故结果为5 和 3

    这里的要点是,第一次抑或的结果,某一位为1,说明要找的这两个数该位值肯定不同(想想抑或的含义),而之前那些相同的两个数肯定在同一组。
    ==========

    扩展一下到3个数只出现一次,其它都出现两次,大家再考虑下,呵呵。
    2个数的比较容易想到
    duzhe0
        31
    duzhe0  
       2013-12-27 16:22:10 +08:00
    明白了
    Virtao
        32
    Virtao  
       2013-12-27 16:23:35 +08:00   ❤️ 1
    好妙的思路,我写了篇博文,总结了一下:

    http://blog.virtao.org/articles/163.html

    @327beckham
    @duzhe0
    nagato
        33
    nagato  
       2013-12-27 18:05:40 +08:00
    2楼答案简单明了
    pagict
        34
    pagict  
    OP
       2013-12-27 22:30:09 +08:00
    @327beckham 终于懂了……好腻害的说!谢啦
    327beckham
        35
    327beckham  
       2013-12-28 01:16:33 +08:00
    @pagict 如果你和我一样是应届生或者最近在找编程类IT方面的工作的话,强烈建议你通读和精读两本书《编程之美》《剑指offer》,和July的博客。。。这些知识在方方面面会给你很大的帮助,不仅仅是面试
    scola
        36
    scola  
       2013-12-28 08:45:06 +08:00
    @327beckham 赞,受教了
    dingyaguang117
        37
    dingyaguang117  
       2014-01-03 19:40:01 +08:00
    @327beckham 果然牛逼~
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1747 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 26ms · UTC 16:49 · PVG 00:49 · LAX 08:49 · JFK 11:49
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.